Chapter 4 Electro-Optic and Magneto-Optic Effects

In this chapter, we are going to discuss the optical response of a dielectric medium

under an applied dc electric field, which is the so-called linear and quadratic EO
effects.

To facilitate the discussion, let us first consider a non centrosymmetric dielectric

crystal, in the presence of an applied dc field EO . The optical dielectric function

E(w,ﬁg) becomes a function of Eo ,

e(,E)=e"(w)+?(WE, +£¥(w):EE, +
where €% (w)=4xy® (Pockels effect)

eV(w)=4my™ (DCKerr effect)

Dielectric Tensor Approach

The corresponding index ellipsoid can be expressed as
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4.1 Linear EO Effect

The linear EO effect originates from the charge redistribution of a dielectric medium

due to an application of dc electric field.

Note: r,, can be related to the second-order NLO effects.

* For a centrosymmetric crystal, r,, =0

« In the presence of an applied electric field, the index ellipsoid in the principal
coordinate system becomes
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where n_, ng, n,_ are the principal refractive indices without an external field

Example:
m KDP (42m)
i i
0 0 0
0 0 0
(KDP) 0 0 0
I‘a, =
! r, 0 0
0 r,=r, 0
0 0 Tes

In the presence of an electric field with E= (Ex, Ey, EZ)
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+—5+2r,E yz+2r,E zx +2r E xy =1

Let E =E(0,0,1) tobe along Z—axis
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Here A can be diagonalized by solving its eigenvalue equation,
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unitary matrix to represent a coordinate transformation

A A A

¢ ¢, €&
V272 272 0
U=|~2/2 272 0
0 0 1
Note: by F'=UF
FTAF=1 = F"UTAU 7' =1
ie, F'D, F'=1 where D, =U"AU = the diagonal form of A

In the new coordinate system, the index ellipsoid becomes
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The corresponding principal indices of refraction can be found as




2
1 1 (] 3
— =—2+r63E = n '=n nr.E
n. n,

2
1 1 , 1,
— | =51k = n, sn0+5nor63E
n, »

2
1 1 ,
— | == = n'=n;
n, ng

Note An=(n_.—n_) o E indicates alinear EO effect

The connection between the Dielectric Tensor approach and the Impermeability

Tensor approach is:
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An application example of linear EO effect:
+ Phase Modulator
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4.2 Quadratic Electro-Optic Effect

The quadratic EO effect can occur in a medium with any symmetry.
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From |7;(E)=1,(0)+S, EE, , where S, = (BE 3F, )=

Note:
* Sijke = Sjikl ( n; = nji)
* S =S (from the quadratic form of 7(E))

— Therefore, we can define a contracted index form of S, as S,;, where

The index ellipsoid in the presence of quadratic EO effect becomes
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+ An isotropic medium can be rendered into birefringent in a static electric field. The

medium behaves optically as if it is a uniaxial medium in which the electric field
defines the optic axis with E=E (0,0,1)
(1
X —2+Sl3E +y ( +SZ3E )+2 ( +S33E )=1
n
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Birefringence = (n, —n,) = %nS(S13 ~S,)E>=n’SE’ < E”.

In fact, the quadratic EO Effect belongs to a third-order NLO process. Therefore, it
can occur in any medium.

4.3 Physical Properties of EO Coefficients

Assuming ¢, Q be the dynamical variables which describe the electronic (¢) and ionic

(Q) charge distribution. The impermeability tensor can be expressed as



n= U[Q(%)] :

Adiabatic approximation

(i.e., BO approximation)

i.e., Here we imply electronic potential is mainly determined by the ionic charge
distribution. Therefore, a change in the ionic charge distribution will result in a
corresponding change in the electronic potential, which in turn changes the
polarizability of the solid.

Consider a modulating field E(@, ) being applied on the medium. When the
applied frequency nears a characteristic material resonant frequency, a resonance
behavior can be observed. Generally speaking, contributions to the measured EO
coefficient will arise from physical mechanisms appropriate to all of the frequencies

involved.

(i) When @, >> a,, 0,
T A optical phonon

acoustic phonon of the medium

This situation occurs when the optical field frequency used is much higher than any
lattice resonances and only parametric NLO processes are significant (SHG, OPA,

etc.)

(ii) When o, < @,

Optical phonon (relative motion of ion cores inside a unit cell) contributions can not
be neglected. In this case,

dy" (@) | g 7
dE(®,) |EWw,)],, | 9 |,, @,
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where [ 4 } = purely electronic origin from the medium
JE(®,) |,
[ 9 Z(l)
30 =the change in the optical susceptibility due to
L E=0

lattice deformation ~ F’hotoelastic Effect |

90 =action of the modulationg field on the lattice
| dE(®,,)
~ Piezoelectric Effect |
LY (e/M)

resonant with @, (lattice frequency)

E(®,) (o} -a})+2im,T



The EO effect depends on three distinct processes with the modulating frequency:
(@ w,< a,

The stress in the medium induced by the applied field can be released via the

generation of acoustic phonon. Therefore

r,=r" =rf +r® +r" =unclamped (stress —free)

b o,<0,< o,

The strain induced by the applied field can be released via the optical phonon

generation while the strain can not be relaxed:

r,=r"+r? =r® =clamped (strain-—free)

© w>a@, r1,= rv Pure electronic orgin  (parametric processes)

oz _ oz (a_q)
oE 0=0 oq 0 oE

resonant with @), ~ 10" - 10" sec™ (optical frequency)

4.5 Electro-Optic Devices

From the previous discussion, we know that application of the electric field changes
the index ellipsoid and therefore the index of refraction of the crystal depends on the

field strength of a linearly polarized EM normal mode.

Two Geometries in EO Devices:
* Transverse: The applied electric field is perpendicular to the propagation direction



of optical field.
* Longitudinal: The d.c. electric field is parallel to the propagation direction of

optical field.

m Longitudinal EO Modulation

(a) z-cut LiNbO, plate (3m)
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The principal indexes of refraction with E « =E Z become:
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No birefringence is induced by the electric field in this device geometry and there is

no phase retardation between any two orthogonally polarized waves propagating



along Z.

(b) z-cut cubic crystal (GaAs)

Let E=E?%
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xz(_2)+}’_2+_2+2r63Exy:1 (T3 = 14)
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= An electrical controllable birefringent plate, which can be used as

« Phase Modulator (PM)

L L sV
Ap=27n_, 1 27n,, 1- —n’r, 7
= V,=— Jor A@ =7 Itisindependent of the dimension of the crystal

41

To make a pure phase modulator, an input polarizer must be aligned in either the x’ or

y’ direction.

- Amplitude Modulator (AM)

The input wave can be polarized along the x-axis
X

Polarizer

Transmission T

Analyzer
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r=7”(ny,—nx)L= 7;” VeV singt
V.= (am)
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The optical transmission through the analyzer can be described by:

0 ”Vm
T=T,1+A-sin@,t) |where A= Vv

b4

Longitudinal devices have a serious drawback, that is the device designer can not

reduce the halfwave voltage by varying the geometrical dimension of EO crystal.

m Transverse EO modulation (E e L k)
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m Electro-Optic Fabry-Perot Modulator (Symmetric FP)
HR HR coating

Light

Transparent

electrode Reflectance R = |r|2

Transmittance 7T = |t|2 =1-R

From

|4
6 = phase modulation depth = 7tV—'”
g v = if V, small, A and J are large
A = amplitude modulation depth = n'V—'”

z

To reduce V_, long crystal is required. An efficient method to increase crystal is to

use a FP cavity to take advantage of the multiple reflected beam.

« Fabry-Parot Amplitude-Modulation

(1-R)
(1I-R)’ +4Rsin’ ¢

Note: T = Transmissivity of the FP cavity =

« FP Phase Modulation (asymmetric FP)

HR HR
R<1 R=1

rEs

E / electrode
Transparent |<—>|

electrode L
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r=e'“’=% with r,=—VR r,=1 and p=""L
- e
\/ 2zn, L
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If the device is properly biased such that @¢(V =0)=mx,

then & =2tan™ 1-l-\/itan(ﬂ:L) 527t1+\/§i if VKV,
1-JVR v, 1-JRV,

i.e., @ can be enhanced by 1+VR at the expense of the reduction in the
1-VR
bandwidth.

R = mirror reflectivity

2zn L
¢ = phase shift = 2mL = A znf
A A A

1
=n —=-n’
r,V where n=n,——nr,E

then T is electrically tunable.

If T is biased at 50% without an applied electric field, then

(d—T) =£ where F = 4R 3 = Finesse
ig), = (1-R)

Soif F=30

:(d—TJ =10 FP
d¢ 1/2

=1 Conventional AM .

I
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m Bistable EO Devices

AM Det
A
7w Y
I, :\L cryt Z > 1,
. J
FP

T = cavity transmissivity

1, (1-R)

I, (1-R) +4Rsin’ ¢

L

where ¢=¢ +al, 2% (round — trip phase shift)

(1=R)* +4Rsin*(p, + o)
(1-Ry

=1,
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m EO Frequency Shifting & Pulse Compression

Note: if AgecV =A +& ina EO phase modulator

Voltage applied on the EO

modulator
/1| 5 1 1
Aol L
. . . » !
Then

E(z,t)=E o (@t+otHg )ik _ [ i)
dg(t)
dt

=w=0,+0

i.e.,

Frequency translation induced by an EO modulator if the driving field is linearly

increased its amplitude with a slope of o .

«if V =V, +at’, the modulating amplitude increases quadratically

= E(z t)_Aei(mot—at2+¢,,)—ikz
1) =
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Frequency is chirping (i.e., depend on time)
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Now let pulses pass through a medium with GVD |(a # 0)




pulse width 7=T, -T, = L - L =L- 4|1 2ot
v, (@, +ar) v,(o,-ar) do| v,
. 1d|1 o .
define a=———|— | =parameter for group velocity dispersion (GVD)
2dw\ v,
. 1 1 1 .
=ifa=— = , then unchanged pulse width
2L 4 (1 4La
dol v,
V. +oat’
|
chirping GVD
o a#0

7777

m EO Beam Deflection

7’

—>k n(x)=n+%x >
4 \
|

Index of refraction depends on x

v

(transverse dimension)

4.6 Magneto-Optic Effect

Optical dielectric tensor € can also be a function of an applied dc magnetic field
H,.However, note that & has the following symmetry relation:

I. g(H,)=¢,(-H,) since H, is an axial vector.

II. g; isalso Hermitian, i.e., &,(H,)= 8; (H,)



Therefore, by using £=¢'+ig"

Il. Hermitian

g'(H,)=¢;'(-H,)=¢;'(H,) : &£ isasymmetric and even function of H,

I
/\AII. Antisymmetry wrt ij

g'"(H)=-¢,"(H)=¢,"(-H,) : antisymmetric and odd function of H,
~_ ! s
H g;'(H,) = linear birefringence (Cotton - Mouton Effect)
ere
&' (H,) = circular birefringence (Faraday Effect)

Example:

Consider a medium of uniaxial symmetry, having H , Darallel to the z-axis:

g, ig,"
Real part:¢ '=¢ ', ¢,"isevenin H, E=|-ie," €'
'
0 0 £,
Imaginary part: & "=-¢ " oddin H,
. : (kD) . L
Diagonalize & with ei:T and Z as the basis yields:

w\e, a,\/€.'
Since |g,, "|<<|e, |k, =— == 1ilsx "
Y ) c ce,.' 2"
The circular birefringence in a medium of length 1: Ak l=(k, —k_)| =——1.

cE

A linearly polarized beam propagating along Z will have its polarization rotated by
an angle: ¢=(k, —k_)I



forward
— back reﬂectlon
£
P

backward

Forward Propagation:
Input on the medium
e = %(& + é_)=linearly polarized beam can be decomposed into two fields with +

and — circular polarizations which are the eigen-modes of the MO medium.

After propagates a distance /

A 1 i
e, —> \/E(e e +é ek-e)

i.e., Alinearly polarized beam with 45° rotation



